
An Ontology to Semantically Declare and
Describe Functions

Ben De Meester, Anastasia Dimou, Ruben Verborgh,
Erik Mannens, and Rik Van de Walle

Ghent University – iMinds – Data Science Lab, Belgium
{firstname.lastname}@ugent.be

Abstract. Applications built on top of the Semantic Web are emerging
as a novel solution in different areas, such as decision making and route
planning. However, to connect results of these solutions – i.e., the se-
mantically annotated data – with real-world applications, this semantic
data needs to be connected to actionable events. A lot of work has been
done (both semantically as non-semantically) to describe and define Web
services, but there is still a gap on a more abstract level, i.e., describing
interfaces independent of the technology used. In this paper, we present
a data model, specification, and ontology to semantically declare and
describe functions independently of the used technology. This way, we
can declare and use actionable events in semantic applications, without
restricting ourselves to programming language-dependent implementa-
tions. The ontology allows for extensions, and is proposed as a possible
solution for semantic applications in various domains.

Keywords: Application, Function, Ontology, Semantic Web

1 Introduction

Semantic applications are emerging as a solution to data-driven problems. For
instance, the ORCA project aims at automatically assigning nurses to patient
calls in a hospital based on their context [1]. Linked Connections define a way to
publish raw transit data, to be used for intermodal route planning [3]. In projects
like the aforementioned, it is common that the Semantic Web is not solely used
as a means to publish data, but also as a catalyst to execute other actions, e.g.,
calling a real-world nurse, or executing a route planning algorithm. Usually, this
implies querying the RDF results for possible actions, parsing the data using cus-
tom parsing rules, and executing the actual function. E.g., in the ORCA project,
a semantic reasoning system derives the most suitable nurse. The resulting turtle
data is queried, resulting in the triple ex:call1 ex:assign ex:nurseA. How to
convert this triple to the execution of the function callNurse(nurseA, call1)

is not semantically defined, but is defined ad hoc per use case.

 {firstname.lastname}@ugent.be


2 Ben De Meester et al.

There exist many specifications handling Web services, both non-semantically
(e.g., WSDL and WADL) and semantically (e.g., OWL-S and Hydra) 1. These
specifications target different facets (e.g., HTTP-based vs SOAP-based access,
defining RESTful APIs, etc.), but have in common that they define Web ser-
vices. Thus, they clearly specify, e.g., which HTTP method to invoke with which
parameter to correctly call the Web service. The big drawback of these specifi-
cations is thus that they are very coupled with the technology stack. However,
not all actions can be executed using Web APIs, either because of performance
or practicality reasons. For example, the nurse call system is a near real-time
system, which implies that unnecessary HTTP connections should be avoided.

In this paper, we present a general vocabulary as a data model, specification,
and ontology to semantically declare and describe functions. Instead of defin-
ing technology-specifics, i.e., hard-coding executable actions, the functions are
described independently of the technology that implements them. Complemen-
tary to the current specifications that describe how to execute a certain service,
this vocabulary describes what a functions does. By semantically defining these
functions, we provide a uniform and unambiguous solution, and thus, we close
the gap between semantic data and any real-world action, enabling semantic
applications to be used in real-world scenarios.

2 The Function Ontology

The Function model allows users to declare that a certain function exists, and
associates this function with certain problems and the algorithms it implements.
Furthermore, it allows for the description of executions of functions. Execution
descriptions of functions assign values to the input parameters, e.g., function
int sum(int a, int b) is a description of a function, whilst sum(2, 4) is a
description of the execution of the sum function. The Function model does not
describe the internals of a function, as this depends on the used technology.
E.g., the aforementioned sum function can be interpreted for implementation in
JavaScript as return a + b, in PHP as return $a + $b;, using a Web service,
or via another technology.

The Function Ontology2 consists of a set of base classes. A problem, al-
gorithm or function can be defined as an instance of those base classes. As
new problems and algorithmic solution arise daily, it would not be beneficial to
include all possible problems and algorithms in the Function Ontology. Prob-
lems, functions, and algorithms can be classified using the SKOS model [4].
For example, a sumProblem can be classified as ex:sumProblem skos:broader

ex:mathProblem. These classifications can be reused across domains, indepen-
dent of the used technologies.

1 See https://www.w3.org/TR/wsdl20/, https://www.w3.org/Submission/wadl/,
https://www.w3.org/Submission/OWL-S/, and http://hydra-cg.com/spec/

latest/core/, respectively
2 Published on http://semweb.mmlab.be/ns/function, with accompanying specifica-

tion at http://users.ugent.be/~bjdmeest/function/

https://www.w3.org/TR/wsdl20/
https://www.w3.org/Submission/wadl/
https://www.w3.org/Submission/OWL-S/
http://hydra-cg.com/spec/latest/core/
http://hydra-cg.com/spec/latest/core/
http://semweb.mmlab.be/ns/function
http://users.ugent.be/~bjdmeest/function/


An Ontology to Semantically Declare and Describe Functions 3

ex:sumExecution 
  ex:startValue  "2"^^xsd:decimal; 
  ex:sumValue    "4"^^xsd:decimal; 
  ex:sumResult "6"^^xsd:decimal. 

ex:sumFunction 

ex:sumProblem ex:addAlgorithm 

ex:intA rdf:predicate ex:startValue. 
ex:intB rdf:predicate ex:sumValue. 

ex:result rdf:predicate ex:sumResult. 

fn:solves 

fn:executes 

fn:returns fn:implements 

fn:Function 

fn:Problem 

fn:Execution 

fn:Algorithm 

fn:Parameter 

fn:Output 

fn:expects 

skos:broader skos:narrower skos:broader skos:narrower 

Fig. 1: The Function ontology, with an example of how reification is used to
connect named parameters and output values to the function execution.

The Function Ontology (see Figure 1) consists of the following classes:

– Function The declared function (e.g., function sum)
– Problem A problem that a function solves, e.g., adding two numbers.
– Algorithm A declaration of an algorithm. We separate the algorithm con-

cept, as there are no one-to-one mappings between problems, functions, and
algorithms [2].

– Parameter A parameter of a function (e.g., function sum has two param-
eters, a and b). rdfs:range can be used to describe the type of that pa-
rameter, and reification (as opposed to, e.g., using RDF lists) is used to
create named connections between a function and its parameters (cfr. the
parameter and execution declaration in Figure 1).

– Output An output of a function, e.g., function sum(a, b) has sumResult

as output. Typing and reification paradigms are similar as with parameters.
– Execution An execution assigns actual input values to function parame-

ters, and holds the output values. E.g., sum(2, 3) is an execution of int

function sum(a,b).

3 Example and Conclusions

These base classes do not define any specific problem, function or algorithm, but
allow to declare and describe any specific problem, function, or algorithm. For
example, if John Doe needs a description of a sum function – given it does not
already exist – he can publish his own descriptions as shown in Listing 1. Soft-
ware systems supporting this description are thus able to compute the execution
of that function. The deployment/implementation of the described functions is
independent of the programming language and the access interface.



4 Ben De Meester et al.

1 johndoe:sumProblem a fn:Problem ; skos:broader johndoe:mathProblem.
2 johndoe:sumAlgorithm a fn:Algorithm.
3

4 johndoe:sumFunction a fn:Function;
5 dcterms:title "The sum function"^^xsd:string;
6 dcterms:description "This function can do the sum of two integers."^^xsd:string;
7 fn:solves johndoe:sumProblem;
8 fn:implements johndoe:sumAlgorithm;
9 fn:expects [ rdf:predicate johndoe:startValue; fn:required "true"^^xsd:boolean ];

10 fn:expects [ rdf:predicate johndoe:sumValue ; fn:required "true"^^xsd:boolean ];
11 fn:returns [ rdf:predicate johndoe:sumResult ; fn:required "true"^^xsd:boolean ].
12

13 johndoe:startValue rdfs:range xsd:integer.
14 johndoe:sumValue rdfs:range xsd:integer.
15 johndoe:sumResult rdfs:range xsd:integer.
16

17 johndoe:sumExecution a fn:Execution;
18 fn:executes ex:sumFunction;
19 johndoe:startValue "2"^^xsd:integer;
20 johndoe:sumValue "4"^^xsd:integer.

Listing 1: sum function declaration

This example shows how the Function Ontology allows for semantic sys-
tems to connect to non-semantic processing functions. By remaining technology-
agnostic, both small and large-scale RDF processing actions can be defined,
without solely depending on Web services as execution platform. As such, it will
be evaluated in the frame of, among others, ORCA, Linked Connections3, and
the COMBUST project4. Future work includes the creation of an upper level
reference function model and a specification of the technical integration process.

References

1. Arndt, D., De Meester, B., Bonte, P., Schaballie, J., Bhatti, J., Dereuddre, W.,
Verborgh, R., Ongenae, F., De Turck, F., Van de Walle, R., Mannens, E.: Ontology
reasoning using rules in an eHealth context. In: Proceedings of the 9th International
Web Rule Symposium: Industry Track. Lecture Notes in Computer Science, vol.
9202, pp. 465–472. Springer (Aug 2015), http://link.springer.com/chapter/10.
1007/978-3-319-21542-6_31

2. Bratas, C., Maglavera, s.N., Quaresma, P.: A framework to describe problems and
algorithms in medical informatics via ontologies. In: 4th European Symposium on
Biomedical Engineering. pp. 1–4. University of Patras, Patras, Greece (Jun 2004),
http://www.di.uevora.pt/~pq/papers/patras.pdf

3. Colpaert, P., Llaves, A., Verborgh, R., Corcho, O., Mannens, E., Van de Walle,
R.: Intermodal public transit routing using Linked Connections. In: Proceedings of
the 14th International Semantic Web Conference: Posters and Demos (Oct 2015),
http://ceur-ws.org/Vol-1486/paper_28.pdf

4. Miles, A., Bechhofer, S.: Skos simple knowledge organization system reference. W3c
recommendation, W3C (Aug 2009), https://www.w3.org/TR/skos-reference/,
accessed March 7th, 2016

3 http://linkedconnections.org/
4 http://www.iminds.be/nl/projecten/2015/03/11/combust

http://link.springer.com/chapter/10.1007/978-3-319-21542-6_31
http://link.springer.com/chapter/10.1007/978-3-319-21542-6_31
http://www.di.uevora.pt/~pq/papers/patras.pdf
http://ceur-ws.org/Vol-1486/paper_28.pdf
https://www.w3.org/TR/skos-reference/
http://linkedconnections.org/
http://www.iminds.be/nl/projecten/2015/03/11/combust

	An Ontology to Semantically Declare and Describe Functions
	Introduction
	The Function Ontology
	Example and Conclusions


